Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water.

نویسندگان

  • Céline Durand-Gasselin
  • Régis Koerin
  • Jutta Rieger
  • Nicolas Lequeux
  • Nicolas Sanson
چکیده

We investigate the colloidal stability of gold nanoparticles (AuNPs) coated with zwitterionic sulfobetaine polymers in aqueous solution. Zwitterionic polymers with different molar masses, synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of N,N'-dimethyl(methacrylamido propyl)ammonium propanesulfonate (SPP) exhibit a well known Upper Critical Solution Temperature (UCST) in water, i.e., phase separate at low temperature. The colloidal stability of gold nanoparticles grafted with PSPP was studied as a function of the temperature. The effects of the molar mass of the grafted polymers, the salt concentration, and the presence of free polymer chains in solution were investigated. UV-vis spectroscopy and dynamic light scattering measurements show that whatever the molar mass of the grafted polymer, the nanoparticles never aggregate at low temperature in pure water. However, a reversible thermal-driven aggregation process of the gold nanoparticles is observed in presence of free polymer chains in solution and explained by a depletion process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions.

Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by ...

متن کامل

Assembly of Nanoparticles using Surface-Grafted Orthogonal Polymer Gradients

Polymer-coated surfaces are routinely used in industrially important applications including prevention of biofouling (in fabrication of protein-resistant surfaces), improving stability of colloidal dispersions, surface lubrication, or enhancing wettability and adhesion. Polymer chains chemically bound to the surface represent a special class of polymer coatings that has gained considerable atte...

متن کامل

A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.

Di- and triblock non-ionic copolymers based on poly(ethylene oxide) and poly(propylene oxide) were studied for the stabilization of nanoparticles in water at high ionic strength. The effect of the molecular architecture (di- vs. triblock) of these amphiphilic copolymers was investigated by using gold nanoparticles (AuNPs) as probes for colloidal stability. The results demonstrate that both di- ...

متن کامل

Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.

The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was o...

متن کامل

Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies—Synthesis and Characterization

The synthesis of polymer-coated gold nanoparticles with high colloidal stability is described, together with appropriate characterization techniques concerning the colloidal properties of the nanoparticles. Antibodies against vascular endothelial growth factor (VEGF) are conjugated to the surface of the nanoparticles. Antibody attachment is probed by different techniques, giving a guideline abo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 434  شماره 

صفحات  -

تاریخ انتشار 2014